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Correlation functions in first-order phase transitions

V. Garrido and D. Crespo*

Departament de Fı´sica Aplicada, Universitat Polite`cnica de Catalunya, Campus Nord UPC, Mo`dul B4, 08034, Barcelona, Spain
~Received 4 April 1997!

Most of the physical properties of systems underlying first-order phase transitions can be obtained from the
spatial correlation functions. In this paper, we obtain expressions that allow us to calculate all the correlation
functions from the droplet size distribution. Nucleation and growth kinetics is considered, and exact solutions
are obtained for the case of isotropic growth by using self-similarity properties. The calculation is performed
by using the particle size distribution obtained by a recently developed model~populational Kolmogorov-
Johnson-Mehl-Avrami model!. Since this model is less restrictive than that used in previously existing theories,
the result is that the correlation functions can be obtained for any dependence of the kinetic parameters. The
validity of the method is tested by comparison with the exact correlation functions, which had been obtained
in the available cases by the time-cone method. Finally, the correlation functions corresponding to the micro-
structure developed in partitioning transformations are obtained.@S1063-651X~97!12209-7#

PACS number~s!: 05.70.Fh, 05.70.Ln, 82.20.Mj, 81.30.2t
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I. INTRODUCTION

Solid-state transformations usually occur by nucleat
and subsequent growth of particles in a volume or at
interface. The reaction kinetics may be interface controll
as in the case of recrystallization of metals, or diffusion li
ited, as in the case of primary crystallizations. For both ty
of kinetics, the transformation may be analyzed by the the
of nucleation and growth processes developed in the 19
by Kolmogorov, Johnson and Mehl, and Avrami~KJMA!
@1–5#. Recently, and after some questioning, the theory
been rederived requiring only the hypothesis of rand
nucleation@6,7#. The theory is able to evaluate the time d
pendence of the transformed fraction during the transfor
tion from the knowledge of the kinetic magnitudes, name
nucleation rateI and growth rateG. An extension of the
theory based on the same hypotheses as KJMA plus a m
field hypothesis has been derived by Crespo and Pradel@8#
to allow the evaluation of the particle size population a
function of time, which is based on the knowledge, as
KJMA, of the kinetic magnitudesI (t), G(t) and considers
the size of the nuclei while formed. The determination of t
resulting particle size distributions from a primary crysta
zation is of highest interest in obtaining good physical pro
erties by means of controlling the density and sizes of
particles, i.e., nanocrystalline materials obtained by prim
crystallization of metallic glasses. The particle size distrib
tions have already been obtained for interface and diffus
controlled growth processes@8,9#, and for the case of a pri
mary precipitation during annealing of a glassy alloy resu
ing in a nanocrystalline structure@10#. We will call this
model ‘‘populational KJMA.’’

Furthermore, the experimental evaluation of particle s
distributions is also of highest interest. Several techniq
exist for the evaluation of microstructures; namely, scann
and transmission electron microscopy~SEM and TEM!, and
small angle x-ray and neutron diffraction~SAXS and
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SANS!. While SEM and TEM pictures give directly approx
mated particle size distributions, SAXS and SANS give
indirect measure by means of the Fourier transform of
autocorrelation function corresponding to the particle s
distribution @11#. Moreover, macroscopical properties of th
materials are also related to the spatial correlation functio
Therefore, the evaluation of the correlation functions fro
the particle size distributions is becoming of major intere

An elegant theory that gives exact correlation functio
for a first order phase transition in ap degenerated system
was developed nearly ten years ago by Ohtaet al. @12#, and
is known as the time-cone method. However, the hypoth
under which the method is deduced heavily restricts its pr
tical applicability to real systems. For the particular case o
nondegenerated system,p51, Sekimoto @13–15# has de-
rived a formal solution that gives the particle size popu
tions and the correlation functions. However, the particu
casep51 is not extensive to higher degrees of degenera
(p.1). Furthermore, there is no expression able to evalu
the particle size distributions from such correlation fun
tions.

The model for evaluating grain size populations in a fi
order phase transition, ‘‘populational KJMA,’’ was deve
oped for a completely degenerated system (p→`). How-
ever, the correlation functions of a nondegenerated (p51)
and partially degenerated (1,p,`) systems can be ex
pressed in terms of the correlation functions of the co
pletely degenerated (p→`) system, as will be demonstrate
in the present paper. On the other hand, the model is
restrictive than the time-cone method, and allows evalua
of correlation functions for nontrivial kinetics where th
time-cone method cannot be applied, i.e.,I (x,t), G(x,r ,t),
where t is the time,x is the transformed fraction at timet,
and r is the individual radius of the growing droplets.

The object of the present paper is the evaluation of
correlation functions from a given particle size distributio
which may be obtained either by using the ‘‘population
KJMA’’ method or by any other calculation or experiment
method. Correlation functions are calculated for thep-JM
model (p degenerated Johnson-Mehl withI 5const,
2781 © 1997 The American Physical Society
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2782 56V. GARRIDO AND D. CRESPO
G5const! and p-cell @p degenerated withI 5I 0d(t) and
G5const# in two and three dimensions, and the results
produce exactly the correlation functions obtained by
time-cone method. Correlation functions corresponding t
I 5const and diffusion limited growth with hard and soft im
pingement,I 5I 0 and G5 G(r ,x), characteristic of a pri-
mary crystallization, have also been calculated. In this c
the time-cone method cannot be applied, and therefore
obtained correlation functions cannot be compared.

II. GENERALIZED CORRELATION FUNCTIONS

A. Theory

The correlation functions are intimately related to t
phase structure developed during the phase transition. G
eralizing the conventions used by Sekimoto@13,16# and Ohta
et al. @12# we can distinguish between droplets, domai
phases, and total transformed phase, according to the fol
ing definitions.

~1! ‘‘Droplet’’ at time t (G): the bounded region tha
comes from thei th center of nucleation. This region is cha
acterized by its shape, which is specified by its indexa. It
also belongs to one of the transformed phases,k. The
D-dimensional vectorra i distinguishes the location of thi
region. Here we mean by the locationra i of the region
Wka(ra i) the location of the representative pointPka i , the
nucleation center, which we fix for respective (a i ) relatively
to the regionWka :

~G!ka i5Wka~ra i !. ~2.1!

~2! ‘‘Domain’’ at time t (D): the union of the self-similar
bounded regionsWka(ra i) with common shapea at time t:

~D !ka5ø
i

Wka~ra i !. ~2.2!

~3! ‘‘Phase’’ at timet (P): the union of all the bounded
regions$Wka(ra i)% at time t with commonk:

~P!k5ø
a

ø
i

Wka~ra i !. ~2.3!

~4! ‘‘Transformed phase’’ at timet ~TP!: the union of all
the phases:

~TP!5ø
k

ø
a

ø
i

Wka~ra i !. ~2.4!

In order to study the correlation functions, it is necess
to characterize the phases. Previous work performed by O
et al. @12# by using the time-cone method was develop
over a system exhibiting the following properties:~i! The
order parameter has ap-simplex symmetry wherep may be
infinite. Near the transition point, the order parameter ha
unique value that is taken to be zero and corresponds
stable disordered state. Trespassing the transition point tp
phases are perfectly degenerate so that interfaces divi
any two of thep stable phases are equivalent.p ‘‘colors’’ are
assigned to thep phases.~ii ! By an external variable, usuall
temperature, the system is quenched from the disord
state with color ‘‘0’’ to the ordered phases. Once the tran
tion point is trespassed, the stable ordered droplets nuc
randomly and grow in the matrix ‘‘0,’’ which is now meta
-
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stable. This randomness enables us to use the Poisson d
bution for nucleation events. Each droplet is assigned to
of the colors from ‘‘1’’ to ‘‘p.’’ ~iii ! An ordered droplet
cannot shrink. Furthermore, the normal velocity of a growi
droplet front is not an increasing function of time and
independent of the color ‘‘i .’’ The finiteness of a critical
radius is ignored; its existence effectively violates this co
dition. A spatially anisotropic growth is allowed.~iv! The
velocity of a moving droplet front is not affected by th
environment except by collision of the fronts. It is assum
that the anisotropy of the velocity is not strong enough
the velocity to be well defined at any instant near the int
section of two droplet fronts. When two droplets collide wi
each other the droplet front between them disappears if t
colors are the same. If their colors are different both drop
cease to grow at that point so that a static interface is c
structed. Thus, the system is eventually occupied by fro
ordered droplets. A coarse-grained picture is adopted so
the width of interfaces is infinitesimal.

In this model the nucleation rateI (t) is introduced in such
a way thatI (t)dt droplets nucleate per unit volume in th
matrix ‘‘0’’ in the time interval betweent and t1dt. Be-
cause of the perfect degeneracy ofp stable phases, the nucle
ation rate of a droplet with color ‘‘i ’’ is independent of ‘‘i ’’
and is equal toI (t)/p.

It is important to note that some of these restrictions
specific to the time-cone method and are not related to
definition of the correlation functions themselves. Therefo
if the information about droplet size distribution is availab
from any alternative means, either experimental or theor
cal, the correlation functions can be exactly calculated,
will be shown later. In particular, this allows us to overcom
three of the above restrictions:~1! It is possible to study
systems where the normal velocity of a growing droplet fro
is an increasing function of time.~2! It is possible to take
into account the finiteness of the critical radius.~3! It is
possible to study systems where the velocity of a mov
droplet front is affected by the environment and not only
collision; for example, in diffusion controlled growth with
hard or soft impingement.

In the following, we derive the expressions for the corr
lations functions. First, we recall the definitions and some
their properties. Then we demonstrate that any of the co
lation functions may be obtained as a function of the drop
autocorrelation function. Finally, an expression for calcul
ing the droplet autocorrelation function as a function of t
particle size distribution is presented.

In order to represent the phase structure, it is conven
to introduce the following two-valued function:

gi~r ,t !5H 1,

0,

if r belongs to a droplet ofi th phase

at time t

otherwise.

~2.5!

Since any spatial point belongs to one of the phases ‘
to ‘‘ p,’’ it should have the following identity:
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p

gi~r ,t !. ~2.6!

Then it is easily shown that

f i~ t !5^gi~r ,t !&5
1

p
@12f0~ t !#5f1~ t !, ~2.7!

wheref i(t) is the volume fraction of the phase with colo
‘‘ i ,’’ and f0(t) is the volume fraction of the matrix ‘‘0.’’ In
other words,f i(t) is the probability of finding a point a
time t in a phase ‘‘i ,’’ and f0(t) is the probability of finding
a point at timet in a matrix ‘‘0.’’

The following is also obtained@13,16#:

f0~ t !5exp@2D~1!~ t !#,
~2.8!

D~1!~ t !5E
0

t

dtI ~t!V~ t2t!,

whereD (1)(t) is the ‘‘extended volume,’’ andV1(t2t) is, at
time t, the volume of a droplet nucleated at timet.

The correlation functions are defined as
is
.

le
r a
b

p

G0~r2r 8,t !5^g0~r ,t !g0~r 8,t !&,

G1~r2r 8,t !5^gi~r ,t !gi~r 8,t !&,
~2.9!

H0~r2r 8,t !5^g0~r ,t !gi~r 8,t !&,

H1~r2r 8,t !5^gi~r ,t !gj~r 8,t !&, iÞ j

where the angular brackets mean the average over all
sible sets of nucleation and growth behaviors. Takingr 850
for simplicity, and without loss of generality,~1! G0(r ,t) is
the probability of finding, at timet, two points separated by
a distancer in the matrix ‘‘0.’’ ~2! G1(r ,t) is the probability
of finding, at timet, two points separated by a distancer in
the same phase ‘‘i .’’ ~3! H0(r ,t) is the probability of finding,
at time t, two points separated by a distancer , one in the
matrix ‘‘0’’ and the other in the phase ‘‘i .’’ ~4! H1(r ,t) is
the probability of finding, at timet, two points separated by
a distancer , one in the phase ‘‘i ’’ and the other in the phase
‘‘ j ,’’ where ‘‘ i ’’ and ‘‘ j ’’ represent different phases.

However, noting the identity~2.6!, the above four func-
tions are not mutually independent. In fact, they satisfy
following relations
~2.10!
hat

ts
of

are
st
le
ring
H0~r ,t !5
1

p
@f0~ t !2G0~r ,t !#,

H1~r ,t !5
1

p~p21!
@C0~r ,t !2pG1~r ,t !#, ~2.11!

where

C0~r ,t !5122f0~ t !1G0~r ,t !. ~2.12!

Thus, without loss of generality, we can choosef0(t),
G0(r ,t), andG1(r ,t) as the basic quantities. The next step
to calculateG0(r ,t) andG1(r ,t). These quantities, given Eq
~2.12!, are evaluated as

G0~r ,t !5C0~r ,t !12f0~ t !21,
~2.13!

G1~r ,t !5
1

p2 C0~r ,t !1
p21

p2 C1~r ,t !.

Here,C1(r ,t) is the probability of finding, at timet, two
points separated by a distancer in the same droplet into the
whole transformed phase. In other words, it is the drop
transformed phase autocorrelation function averaged fo
the droplets of the transformed phase. The difference
tweenG1(r ,t) andC1(r ,t) is thatG1(r ,t) is taken into ac-
count as well as the connected and the nonconnected dro
of the transformed phase, whileC1(r ,t) accounts only for
t
ll

e-

lets

individual droplets. In this sense, it is interesting to note t
using Eqs.~2.11!, ~2.12! and ~2.13! we can rewriteG1(r ,t)
andH1(r ,t):

G1~r ,t !5H1~r ,t !1
C1~r ,t !

p
,

~2.14!

H1~r ,t !5
C0~r ,t !2C1~r ,t !

p2 ,

where the termG1(r ,t) involves the nonconnected drople
in the transformed phase. This is clear from the deduction
G1(r ,t) in the time-cone method where two mechanisms
used to buildG1(r ,t) independently of the phases, the fir
accounting for the covering of the two points from a sing
nucleation center, and the second accounting for the cove
of the two points from two different nucleation centers.

Taking into account the expressions given in Eqs.~2.10!,
~2.11!, and~2.12! we can write

G0~r ,t !5f0~ t !2pH0~r ,t !,

C0~r ,t !5@12f0~ t !#2pH0~r ,t !5p~p21!H1~r ,t !

1pG1~r ,t ! ~2.15!
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TABLE I. Asymptotic behavior of the correlation functions.

f0(0)51 f0(`)50
f1(0)50 f1(`)5p21

G0(0,t)5f0(t) G0(`,t)5f0
2(t) G0(r ,0)51 G0(r ,`)50

G1(0,t)5f1(t) G1(`,t)5f1
2(t) G1(r ,0)50 G1(r ,`)5p221(p21)p22 C1(r ,`)

H0(0,t)50 H0(`,t)5f0(t) f1(t) H0(r ,0)50 H0(r ,`)50
H1(0,t)50 H1(`,t)5f1

2(t) H1(r ,0)50 H1(r ,`)5p22@12C1(r ,`)#

C0(0,t)512f0(t) C0(`,t)5@12f0(t)#2 C0(r ,0)50 C0(r ,`)51
C1(0,t)512f0(t) C1(`,t)50 C1(r ,0)50 C1(r ,`)
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and thus we can interpretC0(r ,t) as the global correlation
function of the whole transformed phase without interact
with the nontransformed phase.

We can now define the problem we wish to solve. Eq
tions ~2.9!–~2.15! are formal expressions calculable by t
time-cone method in trivial kinetics, but their computation
extremely difficult in nontrivial kinetics. Therefore we nee
another point of view to solve the problem in practical si
ations. Our approach employs the evaluation of the dro
size distribution and the reformulation of the correlati
functions by using only the droplet autocorrelation functio

First, let us study the asymptotic behavior of the corre
tion functions. Sincegi(r ,t) takes the value of either zero o
unity G0(r ,t), G1(r ,t), and H0(r ,t), H1(r ,t) approach
f0(t), f1(t), 0, and 0, respectively, asr→0. As r→` cor-
relation should disappear since the nucleation events are
dom, so that G0(r ,t)5f0

2(t), G1(r ,t)5f1
2(t), H0(r ,t)

5f0(t) f1(t), and H1(r ,t)5f1
2(t). These behaviors ar

summarized in Table I. The limit values of these functio
are also shown in Table II.

From the study of the asymptotic behavior of the corre
tion functions and its limit values, we can arrive at seve
considerations:

~1! It is important to note that whent is sufficiently large,
C0(r ,t) approaches unity so thatG1(r ,`)51/p2

1(p21)C1(r ,`)/p2 for p.1. On the other hand, in th
limit p→` there isG1(r ,t)5C1(r ,t)/p. This implies that
the asymptotic structure function of the area occupied
‘‘1’’ phases, the transformed phase, which is intricately
terconnected for small values ofp, is simply given by the
structure function of an isolated ‘‘1’’ phase, which appea
for p→`. This means that if there is any way of obtainin
the structure of the transformed phase in the limitp→`, it is
always possible to obtain the structure functions for a
value of p; in other words, the structure of the transform
phase in the limitp→` contains all the information abou
the structure of all the cases of finitep.

~2! G0(r ,t), C0(r ,t), andC1(r ,t) are independent ofp.
~3! All the curves of these magnitudes grow witht except

TABLE II. Limit values of the correlation functions.

G0(0,0)51 G0(`,0)51 G0(0,̀ )50 G0(`,`)50
G1(0,0)50 G1(`,0)50 G1(0,̀ )5p21 G1(`,`)5p22

H0(0,0)50 H0(`,0)50 H0(0,̀ )50 H0(`,`)50
H1(0,0)50 H1(`,0)50 H1(0,̀ )50 H1(`,`)5p22

C0(0,0)50 C0(`,0)51 C0(0,̀ )51 C0(`,`)51
C1(0,0)50 C1(`,0)50 C1(0,̀ )51 C1(`,`)50
n

-

-
et

.
-

n-

s

-
l

y
-

s

y

G0(r ,t), which decreases, andH0(r ,t), which grows until
f0(t)5f1(t) and decreases afterwards.

From Eq.~2.9! and the general definitions off0(t) and
f i(t),

f0~ t !5^g0~r ,t !&,

f i~ t !5^gi~r ,t !&, ~2.16!

H0~r ,t !5^g0~r ,t !gi~0,t !&.

We can factorizeH0(r ,t) as

H0~r ,t !5f0~ t !f1~ t !F12
1

@12f0~ t !#2

3(
i

p

f i~ t !@12f0~ t !#h0i~r !G , ~2.17!

whereh0i(r ) is the function that accounts for the interactio
between transformed and untransformed phases, and
fulfill h0i(0)51 andh0i(`)50.

Thus, we can define the new functionF(r ,t) as

F~r ,t !5
1

@12f0~ t !#2(
i

p

f i~ t !@12f0~ t !#h0i~r !,

~2.18!

where the temporal and spatial dependencies have been
rated.

We can factorizeH1(r ,t) in the same way.H1(r ,t) gives
the probability of finding, at timet, two points belonging to
two different transformed phases at a distancer . So it must
be a quadratic function of the volume occupied by the tra
formed phases, and can be written as

H1~r ,t !5
p

~p21!
f1

2~ t !F12
1

@12f0~ t !#2

3(
i

p

(
j Þ i

p

f i~ t !f j~ t !hi j ~r !G , ~2.19!

wherehi j (r ) is the function that accounts for the interactio
between phases, and must fulfillhi j (0)51 andhi j (`)50.

Whenp→` we get

H1~r ,t !5f1
2~ t !F12

1

@12f0~ t !#2(
i

p

(
j

p

f i~ t !f j~ t !hi j ~r !G .

~2.20!
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Here we will identify the second term with the abov
definedF(r ,t), that is,

F~r ,t !5
1

@12f0~ t !#2(
i

p

(
j

p

f i~ t !f j~ t !hi j ~r !,

~2.21!

which implies that

h0i~r !5
1

@12f0~ t !#(j

p

f j~ t !hi j ~r !. ~2.22!

Summarizing, we have deduced expressions forH0(r ,t),
H1(r ,t), namely,

H0~r ,t !5f0~ t ! f1~ t !@12F~r ,t !#,

H1~r ,t !5f1
2~ t !@12F~r ,t !# ~2.23!

as a function ofF(r ,t), of which we have two different
functional forms~2.18! and ~2.21! related by Eq.~2.22!.

Replacing Eq.~2.23! in Eqs.~2.11!, ~2.12!, and~2.13! we
obtain

G0~r ,t !5f0~ t !$f0~ t !1F~r ,t !@12f0~ t !#%,

G1~r ,t !5f1~ t !$f1~ t !1F~r ,t !@12f1~ t !#%,
~2.24!

C0~r ,t !5@12f0~ t !#$12f0~ t !@12F~r ,t !#%,

C1~r ,t !5@12f0~ t !#F~r ,t !.

In these equations we can observe the right asympt
behaviors of all the correlation functions. From the last eq
tion we can write all the correlation functions as a functi
of f0(t), C1(r ,t), andp:

G0~r ,t !5f0
2~ t !1f0~ t !C1~r ,t !,

G1~r ,t !5
1

p2$@12f0~ t !#21@f0~ t !1~p21!#C1~r ,t !%,

H0~r ,t !5
1

p
f0~ t !$@12f0~ t !#2C1~r ,t !#%, ~2.25!

H1~r ,t !5
1

p2 @12f0~ t !#$@12f0~ t !#2C1~r ,t !#%,

C0~r ,t !5@12f0~ t !#21f0~ t !C1~r ,t !.

Equations~2.23!, ~2.24!, and~2.25! show that the problem
of determining all the correlation functions has been redu
to the determination of the unknown functionF(r ,t). To
interpret F(r ,t) we will use the properties ofC1(r ,t). As
previously stated,C1(r ,t) is the probability of finding, at
time t, two points separated by a distancer in the same
droplet of the transformed volume; in Eq.~2.24! we can see
thatC1(r ,t) is the probability of finding a point belonging t
the transformed phase timesF(r ,t), so F(r ,t) must be the
system global averaged autocorrelation function.

From this concept we can develop Eq.~2.24! to obtain the
general expression that givesC1(r ,t) as a function of the
ic
-

d

droplet shape-size distribution function, which is supposed
be previously known. We can defineF(r ,t) as

F~r ,t !5
1

N (
i

N

f i~r ,t !5
1

12f0~ t ! (
i

N

f i~ t ! f i~r ,t !,

~2.26!

where N is the total number of droplets, andf (r ,t) is the
droplet autocorrelation function at timet. We can take ad-
vantage of the self-similar properties of the members of
same domain, which we can extend across different pha
Thus,

F~r ,t !5
1

N (
k

(
a

(
b

Nkab~ t ! f ab~r !

5
1

12f0~ t ! (
k

(
a

(
b

Nkab~ t ! fk~ t ! f ab~r !,

~2.27!

where k labels the phases,a labels the domains of eac
phase,b labels the different sizes of the droplets into
specific domain, andNkab accounts for the number of drop
lets of the same sizeb in a given domaina of a given phase
k.

Note that the last equation has the functional form of E
~2.18!, and h0i(r ) can be interpreted asf ab(r ), the indi-
vidual autocorrelation function. Moreover, it is important
note that in the last equation the time dependence is assu
by Nkab , the droplet size-shape distribution function, wh
f ab notices the individual droplet autocorrelation function
shapea and sizeb.

Reordering the sums and multiplying the two sides of
last equation by the transformed phase,@12f0(t)#, we ob-
tain

@12f0~ t !#F~r ,t !5(
b

(
a

(
k

Nkab~ t !

N
@12f0~ t !# f ab~r !.

~2.28!

We can interpret(kNkab(t)/N as the probability of find-
ing droplets of (ab) type in the transformed phase at timet.
Also, we can interpret(k@Nkab(t)/N#@12f0(t)# as thenD
volume (n-dimensional volume! fraction corresponding to
the droplets of (ab) type at timet.

Using the last equation of~2.24!, we obtain

C1~r ,t !5(
b

(
a

S Vab~ t !

V D f ab~r !, ~2.29!

whereVab(t) is thenD volume occupied by the droplets o
(ab) type at timet, andV is the nD volume of the whole
system under consideration.

DevelopingVab(t) as a function of the number of drop
lets of (ab) type,Nab , and thenD volume of each droplet,
V̄ab , we have

C1~r ,t !5(
b

(
a

Nab~ t !V̄ab

V
f ab~r !, ~2.30!
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and thus

C1~r ,t !5(
b

(
a

nab~ t !V̄ab f ab~r !, ~2.31!

wherenab(t) is thenD density of the droplets of (ab) type
at time t.

Computation off ab(r ) is significantly simplified by re-
calling that V̄ab f ab(r ) is the theoretical excludednD vol-
ume@5,13# of two similar droplets with a separation betwe
centers ofr . A greater advantage is gained if we recall tha
is only necessary to calculate one typical droplet autoco
lation function by domain, since all the droplets of one d
main are self-similar, of the same shape, and their auto
relation functions are scalable. Thus, defining

f̃ aS r

1D5 f a1~r ! ~2.32!

as the droplet autocorrelation function of a unit length dro
let, we have

f ab~r !5 f̃ aS r

r b
D ~2.33!

and the final expression ofC1(r ,t) becomes

C1~r ,t !5(
b

(
a

nab~ t !V̄ab f̃ aS r

r b
D . ~2.34!

Equation~2.34! allows one to determineC1(r ,t) exactly
and, as we have shown, the rest of the correlation functio
whether the exact droplet size-shape distribution is kno
because no approximations have been used in its deriva

B. Application to isotropic growth

Equation~2.34! is a formal expression. It can be calc
lated if the shape and space orientation of all grains
known, but this is in fact impossible in practical situatio
due to impingement between growing grains. Moreover,
infinite number of droplet shapes exists, corresponding
impingement between two, three, or more grains.

Nevertheless, we can calculate a first approximation
C1(r ,t), in the case of isotropic growth, neglecting imping
ment and assuming that grains are perfectlynD spherical. It
is referred to asC1

0(r ,t), defined by

C1
0~r ,t !5(

b
nb~ t !V̄b f̃ 0S r

r b
D , ~2.35!

where f̃ 0(r /r b) is the autocorrelation function of annD
sphere given by

f̃ 0S r

r i
D5F12

3

4S r

r i
D1

1

16S r

r i
D 3GQ~2r i2r ! ~2.36!

for three dimensions and
t
e-
-
r-

-

s,
n,
n.

re

n
to

o

f̃ 0S r

r i
D5H 12

r

pr i
F12S r

2r i
D 2G1/2

2
2

p
arcsinS r

2r i
D J

3Q~2r i2r ! ~2.37!

for two dimensions, andQ is the Heaviside function. It is
important to note that we have chosen as the initial drop
autocorrelation function the one corresponding to the m
compact geometrical shape in its respective dimensions.
relation between thenD volume and the radius of the drople
is obviously

V̄b5
2pD/2

dG~D/2!
r b

D . ~2.38!

ThusC1
0(r ,t) gives the autocorrelation function of a sy

tem of nonoverlapped spheres occupying the transform
volume at any timet. In the limit t→`, the transformed
volume fills the whole space, and then the topology d
scribed byC1

0(r ,t) is impossible. However, the transforme
fraction is conserved byC1

0(r ,t), because it can be easil
proved that

E
0

`

dr
2pD/2

G~D/2!
r ~D21!C1

0~r ,t !

5
@12f0~ t !#2

n~ t !
5@12f0~ t !#^V~ t !&, ~2.39!

wheren(t) and ^V(t)& are respectively the totalnD density
of droplets~number of droplets by unitnD volume! and the
averagenD volume of a droplet at timet. Therefore, we see
that the calculatedC1

0(r ,t), without considering impinge-
ment, is the first order averaged autocorrelation function
in other words, the autocorrelation function of an ‘‘avera
droplet.’’

Looking again atC1
0(r ,t), we can easily see that it is no

the autocorrelation function of annD sphere. It could only be
this in the case where all the grains werenD spheres of the
same radius, that is,nb(r ,t)5n0(t)d(r 2r 0). Moreover,
since annD spherical object is the most geometrically com
pact object,C1

0(r ,t) is sure to extend to a distance larger th
the autocorrelation function of annD sphere of the samenD
volume. That is to say, the average droplet is less comp
than anD sphere, but preserves thenD-spherical symmetry.

However, in order to obtain the actualC1(r ,t) we need an
additional hypothesis. We will first characterize true dropl
by their effective radius, defined by

r b5S DG~D/2!

2pD/2 V̄bD 1/D

, ~2.40!

corresponding to the radius of annD sphere of the same
volume. Then we will use the fact that the shape distribut
of grain populations characterized by different effective
diusr b are self-similar. In other words, the shape distributi
of all the grains having the same volume is independen
the value of this volume. Consequently, the autocorrelat
functions of these populations are also self-similar, and
scaled by a characteristic length that is chosen as the e
tive radius. Finally, we can assume thatC1

0(r ,t) is represen-
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56 2787CORRELATION FUNCTIONS IN FIRST-ORDER PHASE . . .
tative of all of them, because it corresponds to the autoc
relation function of the ‘‘average spherical droplet.’’ I
radiusL(t), defined in the same way as before,

L~ t !5S dG~D/2!

2pD/2 ^V~ t !& D 1/D

, ~2.41!

will be used as the corresponding scaling length.
Therefore, the expression forC1(r ,t) is obtained by re-

placing f̃ 0(r /r b) by C1
0(rL /r g) in the definition ofC1

0(r ,t)
given by Eq.~2.35!:

C1~r ,t !5(
g

ngV̄gF 1

12f0~ t !
C1

0S rL

r g
D G

5
1

12f0~ t !(g
(
b

ngnbV̄gV̄b f̃ 0S rL

r br g
D

5
1

12f0~ t !(g
(
b

fgfb f̃ 0S rL

r br g
D , ~2.42!

which has the functional form required by Eq.~2.21!, and
where we can identify the transformation given by E
~2.22!, affected by a scale factor. This equation takes i
account the impingement throughout the interaction betw
populations, resulting in non-nD-spherical droplets.

The behavior ofC1(r ,t) is slightly different from the
C1

0(r ,t) due to the fact that we have built nonspherical dro
let autocorrelation functions. Thus,~1! C1

0(r ,t) extends to
r 52Rmax while C1(r ,t) extends tor 52Rmax

2 /L.2Rmax,
Rmax being the largest droplet radius of the population.~2!
C1(r ,t),C1

0(r ,t) for r→0.
The physical reason for this behavior is that the built no

spherical autocorrelation function is less compact than
original one, and consequently its tail extends further. Th
the behavior obtained forr→0 is due to the conservation o
the transformed volume, expressed by Eq.~2.39!, and the
fact thatC1(r ,t) and C1

0(r ,t) are monotonically decreasin
functions.

Equation~2.42! is postulated from the above cited plaus
bility arguments, that is, it has the functional form requir
by Eqs.~2.18! and~2.21! and takes into account the isotrop
considerations. Moreover, in its deduction no approxim
tions have been made and, therefore, if the hypotheses
correct it gives the exact solution. Nevertheless, it has
been mathematically proved, and its validity will be test
by comparison with analytical results obtained by the tim
cone method in the available cases.

Equations~2.25! and ~2.42! are the main results of thi
paper because they establish a simple way to calcu
C1(r ,t) and, in their turn, all the system autocorrelati
functions as a function of the droplet size distribution fun
tion.

III. RESULTS

We have tested our method for the two typical more i
portant cases given by the literature: thep-state Johnson
Mehl model (p-JM model! and thep-state cell model (p-cell
model!. The p-JM model considers constant nucleation fr
quency and constant isotropic growth rate for
r-

.
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-
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-
are
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-

te

-

-

-

p-degenerated state. Thep-cell model considers instanta
neous nucleation restricted to the initial time (t50! and con-
stant and isotropic growth rate. In both cases, the time
pendent particle size populations are evaluated by mean
the ‘‘populational KJMA’’ model@8#. The resulting correla-
tion functions are compared with those obtained by O
et al. @12#, who used the time-cone method. In order to allo
comparison between the two methods the nucleation rad
which cannot exist in the time-cone method but is inheren
the populational KJMA method, has been taken in the l
case small enough, so that its effect becomes negligible.
thermore, the method is applied to a kinetics characteri
by diffusion controlled growth. Two cases are consider
namely, hard and soft impingement. The first is typical
stoichiometric compounds, assuming that there is no ov
lapping of the diffusion fields between growing grains, wh
the second appears in partitioning transformations, and ta
into account the overlapping of the diffusion fields betwe
contiguous grains. In all cases, the time dependent par
size distributions used for the evaluation of the correlat
functions are obtained by means of the populational KJM
model @10,9#. In the case of a diffusion controlled growth
the correlation functions have not been calculated in the
erature. Moreover, in the case of soft impingement, the tim
cone method cannot be applied because the growth rate
pends on the already crystallized fraction.

The time dependent particle size distributions evalua
by means of the populational KJMA model, and from whi
the correlation functions are obtained, are also given in
results. The grain size distributions are given in the fo
n(r 0)5n(0,r ,r 0). Thus, the grain densityr is defined as

r~r !5
dn~r !

dr
. ~3.1!

The p-JM and thep-cell models have been calculated
two and three dimensions. The calculations are not valid
one dimension because of the special characteristics of
a system, as Axe and Yamada@17# demonstrated. The case
of diffusion controlled growth have only been calculated
three dimensions for both hard and soft impingement, si
it is a situation of major physical significance.

A. p-JM model

Thep-JM model considered has a constant nucleation
I and an isotropic droplet front velocityG. That is to say,

I ~ t !5I 0 ,

G~ t !5G0 .

~3.2!

A nondimensional representation is chosen followi
@12#, in which the natural time scalet, length scalej, and
density scaleh are given by
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t5~ I 0G0
D!21/~D11!,

j5S I 0

G0
D 21/~D11!

, ~3.3!

h5j2~D11!5S I 0

G0
D .

The results obtained for a two-dimensional and a thr
dimensional system are shown in Figs. 1 and 2, respectiv
Figures 1~a! and 2~a! show the dependence of the tran
formed fraction with time. The computed droplet size dist
butions, used in the evaluation of the correlation functions
different times, are shown in Figs. 1~b! and 2~b!. In order to
help comparison, the values of time selected are the sam
those chosen by Ohtaet al. @12#, namely, t/t50.25, 0.5,
0.75, 1, 1.25, 1.5, and 2. Figures 1~c! and 2~c! show the
autocorrelation functionsC1

0(r ,t) ~dashed line! andC1(r ,t)
~solid line!. The correlation functions,C0(r ,t) and G0(r ,t)
are also shown in Figs. 1~d,e! and 2~d,e!. Graphs for the res
of the correlation functions,H0(r ,t), H1(r ,t), andG1(r ,t),
are not shown, but they can easily be built up from t
C1(r ,t) function.

The particle size distribution shows a flat profile in bo
cases. Comparison with the results given by Ohtaet al.
shows thatC1

0(r ,t) is far from the exact result whileC1(r ,t)
is very close. Differences are about 1% but they are not
to numerical approximations in our calculation but to the f
that we consider nuclei of finite size. This implies that t
values off0(t) are slightly different from those obtained b
the time-cone method at the same times and, therefore
numerical asymptotic values of the functions at the sa
times have to be different. However, both the correlat
functions calculated with our method and with the time-co
method satisfy the analytical asymptotic behaviors sum
rized in Tables I and II. These results show the validity of t
relationship between the correlation functions deduced
this paper.

B. p-cell model

For thep-cell model the nucleation events are restricted
t50 and the droplet growth rate is constant and isotrop
That is to say,

I ~ t !5I 0d~ t !,
~3.4!

G~ t !5G0 .

The natural time scalet, length scalej, and density scale
h are given by

t5
I 0

21/D

G0
,

j5I 0
21/D, ~3.5!

h5j2~D11!5I 0
~D11!/D.

Figures 3 and 4 show respectively the two-dimensio
and three-dimensional cases. As in the previous case,
transformed fraction versus time~a!, droplet size distribu-
-
ly.

-
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e
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l
he

tions ~b!, correlation functionsC1
0(r ,t) and C1(r ,t) ~c!,

C0(r ,t) ~d!, andG0(r ,t) ~e! are presented, at the same tim
chosen by Ohtaet al..

A peaked profile is obtained in the droplet size distrib

FIG. 1. Two-dimensionalp-JM kinetics.~a! Transformed frac-
tion vs time.~b! Computed droplet size distributions.~c! Autocor-
relation functionsC1

0(r ,t) ~dashed line! andC1(r ,t) ~solid line!. ~d!
Correlation functionC0(r ,t). ~e! Correlation functionG0(r ,t). ~b!–
~e! are plotted att/t50.25, 0.5, 0.75, 1, 1.25, 1.5, and 2.
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tion, which is completely different from that obtained in th
p-JM case. Consequently, a much more homogeneous g
distribution is obtained, which results in a shorter correlat
length. Therefore, the fact that the final distribution has
small standard deviation around the average radius is

FIG. 2. Three-dimensionalp-JM kinetics.~a! Transformed frac-
tion vs time.~b! Computed droplet size distributions.~c! Autocor-
relation functionsC1

0(r ,t) ~dashed line! andC1(r ,t) ~solid line!. ~d!
Correlation functionC0(r ,t). ~e! Correlation functionG0(r ,t). ~b!–
~e! are plotted att/t50.25, 0.5, 0.75, 1, 1.25, and 1.5.
in
n
a
e-

flected in the correlation functionsC1
0(r ,t) and C1(r ,t),

which become much closer.
Comparison with the analytical time-cone results has a

been performed and the same considerations given for
p-JM model apply.

FIG. 3. Two-dimensionalp-cell kinetics.~a! Transformed frac-
tion vs time.~b! Computed droplet size distributions.~c! Autocor-
relation functionsC1

0(r ,t) ~dashed line! andC1(r ,t) ~solid line!. ~d!
Correlation functionC0(r ,t). ~e! Correlation functionG0(r ,t). ~b!–
~e! are plotted att/t50.25, 0.5, 0.75, 1, 1.25, and 1.5.
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C. Diffusion controlled growth

Most of the interesting transformations driven by a nuc
ation and growth kinetics are primary precipitates with
composition differing from the original composition of th

FIG. 4. Three-dimensionalp-cell kinetics.~a! Transformed frac-
tion vs time.~b! Computed droplet size distributions.~c! Autocor-
relation functionsC1

0(r ,t) ~dashed line! andC1(r ,t) ~solid line!. ~d!
Correlation functionC0(r ,t). ~e! Correlation functionG0(r ,t). ~b!–
~e! are plotted att/t50.25, 0.5, 0.75, 1, and 1.25.
-

material. These transformations result in a partially crys
lized material, with a final crystallized fractiong5
12f0(`). A diffusion controlled growth is normally ob-
tained in such cases as a result of the migration of elem
out of or into the newly formed crystals. The classical e
pression for the growth rate is obtained by considering
grain growing in isolation with spherical symmetry@18#. In
this case, a steady-state concentration profile is obtaine
taking the moving surface of the particle as the origin of t
coordinates. The growth rate is given by

dr

dt
5D̃

C* 2C0

C* 2Cxt

1

r
, ~3.6!

whereC* is the concentration of species at the surface of
particle,Cxt is that inside the crystal, andC0 is that in the
matrix far away from the particle. In this case, the drop
growth rate is isotropic but radius dependent,G(R).

Moreover, a constant nucleation rateI 0 will also be con-
sidered. In this case, a particle growing in isolation is co
sidered, and therefore there is no interference between
concentration profiles of different grains. This case is cal
diffusion controlled growth with hard impingement. We wi
perform the calculations assuming that the transformed f
tion at the end of the primary precipitation is 50%, th
g50.5.

The natural time scalet, length scalej, and density scale
h are given by

t5~ I 0D0
D/2!21/~D/211!,

j5S D0

I 0
D 1/~D12!

, ~3.7!

h5j2~D11!5S D0

I 0
D 2~D11!/~D12!

,

where

D05D̃
C* 2C0

C* 2Cxt
. ~3.8!

As in the previous case, Fig. 5 shows the transform
fraction versus time~a!, droplet size distribution~b!, corre-
lation functionsC1

0(r ,t) and C1(r ,t) ~c!, C0(r ,t) ~d!, and
G0(r ,t) ~e!. The values of dimensionless time are the sa
as in the previous cases, showing that the characteristic
mensionless transformation time is of the same order of m
nitude.

The droplet size distribution shows an asymmetrica
peaked shape, very different from that obtained with int
face controlled growth (p-JM kinetics!. The correlation
functions have shorter correlation lengths, much closer to
value found with thep-cell model. The value ofC1(0,̀ ) is,
as expected, equal to the final transformed fraction, in
case taken to be 0.5.

In partitioning transformations, the overlapping betwe
the concentration fields of neighbor grains cannot
avoided. In fact, this interference diminishes the concen
tion gradient at the surface of the grain, which results in
reduction of the growth velocity. This mechanism is know
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as diffusion controlled growth with soft impingement. Th
fact may be taken into account by considering that the c
centration of diffusing species far away from the grain ha
mean value that increases as the transformation proceed

FIG. 5. Three-dimensional constant nucleation and diffus
controlled growth kinetics with hard impingement.~a! Transformed
fraction vs time.~b! Computed droplet size distributions.~c! Auto-
correlation functionsC1

0(r ,t) ~dashed line! andC1(r ,t) ~solid line!.
~d! Correlation functionC0(r ,t). ~e! Correlation functionG0(r ,t).
~b!–~e! are plotted att/t50.25, 0.5, 0.75, 1, 1.25, 1.5, and 2.
-
a
By

stating a mass balance of the diffusing species, and assu
that at the end of the transformation the concentration gr
ent disappears@10#, a modification of the growth velocity is
obtained:

n FIG. 6. Three-dimensional constant nucleation and diffus
controlled growth kinetics with soft impingement.~a! Transformed
fraction vs time.~b! Computed droplet size distributions.~c! Auto-
correlation functionsC1

0(r ,t) ~dashed line! andC1(r ,t) ~solid line!.
~d! Correlation functionC0(r ,t). ~e! Correlation functionG0(r ,t).
~b!–~e! are plotted att/t50.5, 1, 1.5, 2 and 6.
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2792 56V. GARRIDO AND D. CRESPO
dr

dt
5D̃

C* 2C0

C* 2Cxt
S 12X~ t !/g

12X~ t ! D1

r
, ~3.9!

where the concentrations are the same as in the case of
impingement, andX(t)512f0(t) is the transformed frac
tion at timet.

The natural scales used for presenting the plots are
same as in the case of hard impingement. Figure 6 shows
transformed fraction versus time~a!, droplet size distribution
~b!, correlation functionsC1

0(r ,t) and C1(r ,t) ~c!, C0(r ,t)
~d!, andG0(r ,t) ~e!.

The droplet size distribution also shows an asymme
cally peaked shape, similar to that obtained for hard dif
sion, the main difference being the accumulation of gra
with small radii at the end of the transformation due to t
reduced growth at large transformed fractions. Although
final shape is similar, the time dependence is completely
ferent, showing that the soft impingement kinetics heav
delays the transformation with respect to hard impingem
This is also noted in the dimensionless time values, wh
are nowt/t5 0.5, 1, 1.5, 2, and 6. The correlation functio
also show a very different time dependence.

IV. CONCLUSIONS

The general relationship between spatial correlation fu
tions and droplet size distribution is presented. This exp
sion allows us to obtain all the correlation functions for
given microstructure for an arbitrary value of the degener
parameterp.

While considering nucleation and growth kinetics, exa
correlation functions are obtained in the case of isotro
growth. The concept of isotropy in the growth rate includ
the case where, with the growth of the droplets being
ll.
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he
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h
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anisotropic function, the spatial orientation of the growi
droplets is still isotropic. In those cases, the hypothesis
self-similarity of the growing droplets enables us to obta
exact correlation functions, although the exact droplet si
shape distribution function still remains unknown.

The calculation of the correlation functions is perform
by using the particle size distribution obtained by a recen
developed model~populational KJMA!. Since this model is
less restrictive than those used in previously existing th
ries, the result is that the correlation functions can be
tained for dependencies of the kinetic magnitudes on tim
crystallized fraction and the radius of the growing grain, a
allows us to consider the finite size of the nuclei.

The method has been tested with thep-cell and p-JM
models, for which exact correlation functions exist in t
literature obtained by means of the time-cone method,
shows full agreement considering that in our calculations
finite size of the nuclei has been taken into account. Fina
the correlation functions corresponding to the microstruct
developed in partitioning transformations, considering dif
sion controlled growth with hard and soft impingement, a
also obtained.

The use of the populational KJMA model for determinin
the particle size distributions, together with the method p
sented here for evaluating the correlation functions, result
a powerful tool in the evaluation of micro and macro pro
erties of materials underlying first-order phase transitions
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