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Correlation functions in first-order phase transitions
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Most of the physical properties of systems underlying first-order phase transitions can be obtained from the
spatial correlation functions. In this paper, we obtain expressions that allow us to calculate all the correlation
functions from the droplet size distribution. Nucleation and growth kinetics is considered, and exact solutions
are obtained for the case of isotropic growth by using self-similarity properties. The calculation is performed
by using the particle size distribution obtained by a recently developed nipdpllational Kolmogorov-
Johnson-Mehl-Avrami modglSince this model is less restrictive than that used in previously existing theories,
the result is that the correlation functions can be obtained for any dependence of the kinetic parameters. The
validity of the method is tested by comparison with the exact correlation functions, which had been obtained
in the available cases by the time-cone method. Finally, the correlation functions corresponding to the micro-
structure developed in partitioning transformations are obtaifi&tD63-651X97)12209-7

PACS numbeg(s): 05.70.Fh, 05.70.Ln, 82.20.Mj, 81.36t

I. INTRODUCTION SANS). While SEM and TEM pictures give directly approxi-
mated particle size distributions, SAXS and SANS give an
Solid-state transformations usually occur by nucleationindirect measure by means of the Fourier transform of the
and subsequent growth of particles in a volume or at arfutocorrelation function corresponding to the particle size
interface. The reaction kinetics may be interface controlleddistribution[11]. Moreover, macroscopical properties of the
as in the case of recrystallization of metals, or diffusion lim-materials are also related to the spatial correlation functions.
ited, as in the case of primary crystallizations. For both typed herefore, the evaluation of the correlation functions from
of kinetics, the transformation may be analyzed by the theor§he particle size distributions is becoming of major interest.
of nucleation and growth processes developed in the 1930s An elegant theory that gives exact correlation functions
by Kolmogorov, Johnson and Mehl, and Avrai{JMA)  for a first order phase transition in@degenerated system
[1-5]. Recently, and after some questioning, the theory hawas developed nearly ten years ago by Géttal. [12], and
been rederived requiring only the hypothesis of randonis known as the time-cone method. However, the hypothesis
nucleation[6,7]. The theory is able to evaluate the time de-under which the method is deduced heavily restricts its prac-
pendence of the transformed fraction during the transformatical applicability to real systems. For the particular case of a
tion from the knowledge of the kinetic magnitudes, namely,nondegenerated systerp=1, Sekimoto[13-15 has de-
nucleation ratel and growth rateG. An extension of the rived a formal solution that gives the particle size popula-
theory based on the same hypotheses as KIMA plus a me&ians and the correlation functions. However, the particular
field hypothesis has been derived by Crespo and Priglell casep=1 is not extensive to higher degrees of degeneration
to allow the evaluation of the particle size population as ap>1). Furthermore, there is no expression able to evaluate
function of time, which is based on the knowledge, as inthe particle size distributions from such correlation func-
KJMA, of the kinetic magnitude$(t), G(t) and considers tions.
the size of the nuclei while formed. The determination of the The model for evaluating grain size populations in a first
resulting particle size distributions from a primary crystalli- order phase transition, “populational KIMA,” was devel-
zation is of highest interest in obtaining good physical prop-oped for a completely degenerated systegua-(<). How-
erties by means of controlling the density and sizes of thever, the correlation functions of a nondegeneratged 1)
particles, i.e., nanocrystalline materials obtained by primaryand partially degenerated €lp<<«) systems can be ex-
crystallization of metallic glasses. The particle size distribu-pressed in terms of the correlation functions of the com-
tions have already been obtained for interface and diffusiompletely degeneratedpf— =) system, as will be demonstrated
controlled growth process¢s8,9], and for the case of a pri- in the present paper. On the other hand, the model is less
mary precipitation during annealing of a glassy alloy result-restrictive than the time-cone method, and allows evaluation
ing in a nanocrystalline structurgl0]. We will call this  of correlation functions for nontrivial kinetics where the
model “populational KIMA.” time-cone method cannot be applied, iléx,t), G(x,r,t),
Furthermore, the experimental evaluation of particle sizewvheret is the time,x is the transformed fraction at tinte
distributions is also of highest interest. Several techniqueandr is the individual radius of the growing droplets.
exist for the evaluation of microstructures; namely, scanning The object of the present paper is the evaluation of the
and transmission electron microscof8EM and TEM, and  correlation functions from a given particle size distribution,
small angle x-ray and neutron diffractiofSAXS and which may be obtained either by using the “populational
KIJMA” method or by any other calculation or experimental
method. Correlation functions are calculated for hadM
*Electronic address: crespo@benard.upc.es model (p degenerated Johnson-Mehl with=const,
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G=cons) and p-cell [p degenerated witH=1,6(t) and stable. This randomness enables us to use the Poisson distri-
G=cons] in two and three dimensions, and the results re-bution for nucleation events. Each droplet is assigned to one
produce exactly the correlation functions obtained by theof the colors from “1” to “p.” (iii) An ordered droplet
time-cone method. Correlation functions corresponding to @annot shrink. Furthermore, the normal velocity of a growing
| =const and diffusion limited growth with hard and soft im- droplet front is not an increasing function of time and is
pingement,| =1, and G= G(r,X), characteristic of a pri- independent of the colori‘” The finiteness of a critical
mary crystallization, have also been calculated. In this casgagius is ignored; its existence effectively violates this con-
the time-cone method cannot be applied, and therefore thgition. A spatially anisotropic growth is allowediv) The
obtained correlation functions cannot be compared. velocity of a moving droplet front is not affected by the
environment except by collision of the fronts. It is assumed
Il. GENERALIZED CORRELATION FUNCTIONS that the anisotropy of the velocity is not strong enough for
A. Theory the velocity to be well defined at any instant near the inter-
section of two droplet fronts. When two droplets collide with
each other the droplet front between them disappears if their
Bolors are the same. If their colors are different both droplets
cease to grow at that point so that a static interface is con-
'structed. Thus, the system is eventually occupied by frozen
V6rdered droplets. A coarse-grained picture is adopted so that
the width of interfaces is infinitesimal.
In this model the nucleation ratét) is introduced in such
a way thatl (t)dt droplets nucleate per unit volume in the
matrix “0” in the time interval betweert andt+dt. Be-
cause of the perfect degeneracypastable phases, the nucle-
ation rate of a droplet with colori* is independent of ‘I”
and is equal td (t)/p.

It is important to note that some of these restrictions are
specific to the time-cone method and are not related to the
definition of the correlation functions themselves. Therefore,

(G)ewi =Wiea (T 1) (2.1) if the information _about droplet_ size distripution is available_
from any alternative means, either experimental or theoreti-

(2) “Domain” at time t (D): the union of the self-similar  cal, the correlation functions can be exactly calculated, as
bounded regionsV,,(r,;) with common shape at timet:  Will be shown later. In particular, this allows us to overcome

three of the above restriction$l) It is possible to study
(D)ka=UWa(rai). (2.2 systems where the normal velocity of a growing droplet front
: is an increasing function of tim&2) It is possible to take

(3) “Phase” at timet (P): the union of all the bounded INto account the finiteness of the critical radiu8) It is

The correlation functions are intimately related to the
phase structure developed during the phase transition. Ge
eralizing the conventions used by Sekimfit8,16 and Ohta
et al. [12] we can distinguish between droplets, domains
phases, and total transformed phase, according to the follo
ing definitions.

(1) “Droplet” at time t (G): the bounded region that
comes from theth center of nucleation. This region is char-
acterized by its shape, which is specified by its indext
also belongs to one of the transformed phades,The
D-dimensional vector ,; distinguishes the location of this
region. Here we mean by the locatian, of the region
W,,(r,i) the location of the representative poiR,;, the
nucleation center, which we fix for respectiveij relatively
to the regionw,,, :

regions{W,,(r )} at timet with commonk: possible to study systems where the velocity of a moving
o droplet front is affected by the environment and not only by
(P)k=U UWyo (1 4). (2.3  collision; for example, in diffusion controlled growth with
a i

hard or soft impingement.

In the following, we derive the expressions for the corre-
lations functions. First, we recall the definitions and some of
their properties. Then we demonstrate that any of the corre-
(TP)=U U UW,(r). (2.4) lation functi(_)ns may _be ob_tained as a functiqn of the droplet

K a i autocorrelation function. Finally, an expression for calculat-

(4) “Transformed phase” at time (TP): the union of all
the phases:

. . L ing the droplet autocorrelation function as a function of the
In order to study the correlation functions, it is necessary o +i-je size distribution is presented

to characterize the phases. Previous work performed by Ohta |, o ger to represent the phase structure, it is convenient

etal. [12] by using the time-cone method was developedy, jnyroquce the following two-valued function:
over a system exhibiting the following propertig$} The

order parameter has@simplex symmetry where may be

infinite. Near the transition point, the order parameter has a

unique value that is taken to be zero and corresponds to a 1, if r belongs to adropletofth phase
stable disordered state. Trespassing the transition point the .

phases are perfectly degenerate so that interfaces dividir("t)= attime t 29
any two of thep stable phases are equivalent:colors™ are 0, otherwise.

assigned to the phases(ii) By an external variable, usually

temperature, the system is quenched from the disordered

state with color “0” to the ordered phases. Once the transi-

tion point is trespassed, the stable ordered droplets nucleate Since any spatial point belongs to one of the phases “0”
randomly and grow in the matrix “0,” which is now meta- to “p,” it should have the following identity:
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Go(r—=r",t)=(go(r,t)go(r",1)),
Gy(r—r",t)=(gi(r,t)gi(r',t)),
Ho(r—r",t)=(go(r,t)gi(r",t)),
$i()=(gi(r,0))= %[1_¢o(t)]: (), (2.7 Hy(r=r',t)=(gi(r,t)g;(r’,t)), i#j

p
1:2‘0 gi(r,t). (2.6)

. : (2.9
Then it is easily shown that

where ¢;(t) is the volume fraction of the phase with color Where the angular brackets mean the average over all pos-
“i,” and ¢(t) is the volume fraction of the matrix “0.” In ~ Sible sets of nucleation and growth behaviors. Takifg 0
other words, ¢;(t) is the probability of finding a point at for simplicity, and without loss of generalityl) Go(r.t) is
timet in a phase 1,” and ¢(t) is the probability of finding  the probability of finding, at time, two points separated by

a point at timet in a matrix “0.” a distance in the matrix “0.” (2) G(r,t) is the probability
The following is also obtainefiL3,16]: of finding, at timet, two points separated by a distancen

the same phasei‘” (3) Hq(r,t) is the probability of finding,

do(t)=exg —AD(1)], 2.8 at time t, two points separated by a distangeone in the

matrix “0” and the other in the phasei'” (4) H(r,t) is
the probability of finding, at time, two points separated by
a distance, one in the phasei™ and the other in the phase
“j,” where “i” and “ j” represent different phases.

t
AD(t)= f drl(r)V(t—1),
0

whereA()(t) is the “extended volume,” an¥,(t— 7) is, at However, noting the identity2.6), the above four func-
time t, the volume of a droplet nucleated at time tions are not mutually independent. In fact, they satisfy the
The correlation functions are defined as following relations

1 = Go(r,t) + pHo(r,t) + pHo(r,t) + p(p — 1) Hi(r,t) + pGi(r, t)

2 7

do(t) 1-0(?) (2.10
|
1 individual droplets. In this sense, it is interesting to note that
Ho(r,t)= 5[¢o(t)—Go(f,t)], using Egs.(2.11), (2.12 and(2.13 we can rewriteG,(r,t)
andH(r,t):
1
Hi(r,t) = ———=[Co(r,) =pGy(r,n)], (212 Cort
p(p 1) Gl(r,t):Hl(r,t)-l— 1( ’ ),
where P (2.19
Co(r,t)=1—2¢(t) + Go(r,1). (2.12 LD Co(r,t)—Cy(r,t)
ryt :—1
Thus, without loss of generality, we can choogg(t), ' p?

Gy(r,t), andG(r,t) as the basic quantities. The next step is
to calculateG(r,t) andG,(r,t). These quantities, given Eq. where the ternG,(r,t) involves the nonconnected droplets
(2.12, are evaluated as in the transformed phase. This is clear from the deduction of
G4(r,t) in the time-cone method where two mechanisms are
Go(r,1)=Co(r,t) +2o(t) — 1, (2.13  used to buildG,(r,t) independently of the phases, the first
accounting for the covering of the two points from a single
Gy(r,t)= iZCO(r,t) + p;zlcl(r,t). nucleation center, and the second accounting for the covering
Y of the two points from two different nucleation centers.

. . . ) Taking into account the expressions given in E@s10),
Here,C,(r,t) is the probability of finding, at time, two (2.11), and(2.12 we can write

points separated by a distancén the same droplet into the
whole transformed phase. In other words, it is the droplet

transformed phase autocorrelation function averaged for all Go(r,t)= ¢o(t) —pHo(r,1),
the droplets of the transformed phase. The difference be-
tweenG,(r,t) andC,(r,t) is thatG,(r,t) is taken into ac- Co(r,)=[1— do(t)]— PHo(r,H) =p(p—1)H4(r,t)

count as well as the connected and the nonconnected droplets
of the transformed phase, whif@,(r,t) accounts only for +pGy(r,t) (2.15
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TABLE |. Asymptotic behavior of the correlation functions.

$o(0)=1 $o(®)=0
$.(0)=0 Pe(2)=p~*

Go(04) = dho(t) Go(,t) = #5(t) Go(r,00=1  Go(r,*)=0

G1(0t) = ¢4(1) Ga(%,t) = $3(t) G4(r,00=0 Gy(r,®)=p 2+ (p—1)p 2 Cy(r,»)
Ho(0O)=0 Ho(o,t) = ¢o(t) a(t) Ho(r,0)=0 Ho(r,)=0

H1(0t)=0 Hy(o,t) = (1) Hi(r,0)=0 Hy(r,%)=p~2[1-Cy(r,*)]

Co(0) =1— (1) Co(.,t)=[1—o(t)]? Co(r,0)=0 Co(r,®)=1

C1(0) =1— (1) Cy(»,t)=0 Cy(r,00=0 Ca(r,)

and thus we can interpré(r,t) as the global correlation G(r,t), which decreases, andy(r,t), which grows until

function of the whole transformed phase without interactiong(t) = ¢,(t) and decreases afterwards.

with the nontransformed phase. From Eq.(2.9) and the general definitions afy(t) and
We can now define the problem we wish to solve. Equa-,(t),

tions (2.9—-(2.15 are formal expressions calculable by the

time-cone method in trivial kinetics, but their computation is do(t) =(go(r,1)),

extremely difficult in nontrivial kinetics. Therefore we need

another point of view to solve the problem in practical situ- #i(H)=(gi(r,1)), (2.16
ations. Our approach employs the evaluation of the droplet

size distribution and the reformulation of the correlation Ho(r,t)=(go(r,t)gi(0,1)).

functions by using only the droplet autocorrelation function.
First, let us study the asymptotic behavior of the correla-
tion functions. Sincey;(r,t) takes the value of either zero or
unity Gg(r,t), Gq(r,t), and Hy(r,t), H(r,t) approach Ho(r,t)= ¢o(t) py(t)
do(t), ¢1(t), 0, and O, respectively, as—0. Asr—oo cor-
relation should disappear since the nucleation events are ran- p
dom, so thatGy(r,t)=¢3(t), Gy(r,t)=2(t), Ho(r,t) x> $i(t)[1- ¢o(t)]h0i(r)} 2.17
=¢o(t) ¢4(t), and Hl(r,t)=¢f(t). These behaviors are [
summarized in Table I. The limit values of these functions
are also shown in Table II.
From the study of the asymptotic behavior of the correla
tion functions and its limit values, we can arrive at severa
considerations:

We can factorizeHy(r,t) as

1
S FErO

wherehg;(r) is the function that accounts for the interaction
between transformed and untransformed phases, and must
fuffill hg;(0)=1 andhg;(=)=0.

Thus, we can define the new functiéifr,t) as

(2) It is important to note that whenis sufficiently large, 1 p
Co(r,t) approaches unity so thatG,(r,)=1/p? F(r,t)= 2 di(D[1— () Thgi(1),
+(p—1)Cy(r,)/p? for p>1. On the other hand, in the [1-¢o(t)]*F ™ oo
limit p—o there isG,(r,t)=C4(r,t)/p. This implies that (2.18

‘the”asymptotlc structure function of the_are_a _occ_:upled .bXNhere the temporal and spatial dependencies have been sepa-
1” phases, the transformed phase, which is intricately N ted

terconnected for small values @f is simply given by the . . .
. . e . We can factorizeH(r,t) in the same wayH(r,t) gives
structure function of an isolated “1"” phase, which appears;, probability of finding, at time, two points belonging to

for p—ce. This means that if there is any way of obtaining two different transformed phases at a distanc&o it must

gll\?v;‘trsuCtz;ii%ﬁéhfotrggf;%”?ﬁs g?risciulpetr;ﬁr:mrz Iftolrs an be a quadratic function of the volume occupied by the trans-
ys P Yormed phases, and can be written as

value of p; in other words, the structure of the transformed

phase in the limitp—oo contains all the information about P 1

the structure of all the cases of finipe H(r,t)= —(,bi(t)[ -5
(2) Gy(r,t), Co(r,t), andCy(r,t) are independent gs. (p=1) [1= (V)]

(3) All the curves of these magnitudes grow witlexcept P p
- _ | x2 2 ie(Hhy(n|, (219
TABLE Il. Limit values of the correlation functions. i
Go(0,0)=1 Gy(*,00=1  Gy(0)=0 Go(*,%)=0 whereh;;(r) is the function that accounts for the interaction
G4(0,00=0 Gy(*,00=0 G,(0)=p~ ! Gy(w,x)=p-2 between phases, and must fulfil; (0)=1 andh;(«)=0.

Ho(0.0)=0  Ho(=,0)=0 Ho(07)=0  Ho(e,)=0 Whenp—e we get
Hi(0.0)=0  Hy(»,0)=0 Hy(0#)=0  H,(,)=p?

1 p P
Co00=0 = Co(=0)=1 = Co(02) =1 Co(==)=1  Hy(r,)=¢f(t) 1~ = > ¢i<t>¢j<t>hu<r>}.
C,(0,00=0 Cy(*,00=0 C;(0x)=1 Cy(%,0)=0 [1=o(1)]T 5 (2.20
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Here we will identify the second term with the above droplet shape-size distribution function, which is supposed to

definedF(r,t), that is, be previously known. We can defilkgr,t) as
1 PP 1
F(r’t):[1—¢o(t)] EI ; i(t) (D) h;(r), (r t)—— E fi(r,t)= T=éa0 2 di(D)Fi(r,1),

(2.21 (2.2
which implies that whereN is the total number of droplets, arfdr,t) is the
droplet autocorrelation function at tinte We can take ad-
= E &, (t)hi;(r). (2.22  vantage of the self-similar properties of the members of the
[1— ot same domain, which we can extend across different phases.
Thus,

hoi(r)=

Summarizing, we have deduced expressiongHgfr,t),
H(r,t), namely,

1
FLO=g 2 2 2, Neap(D)fag(r)

Ho(r,t)=o(t) oa()[1-F(r,t)], ke
1
Ha(r,H)=¢3(O[1—F(r,1)] (2.23 = DD D News(t) () fup(r),
1-¢o(t) T < F “
as a function ofF(r,t), of which we have two different 29
functional forms(2.18 and(2.21) related by Eq(2.22. (.27
bthpIacmg Eq(2.23 in Egs.(2.13), (2.12, and(2.13 we where k labels the phasesy labels the domains of each
obtain phase, labels the different sizes of the droplets into an
Go(r,t) = dho(t){do(t) + F(r,t)[ 1= po(t) I}, specific domain, andll,; accounts for the number of drop-
lets of the same siz8 in a given domairx of a given phase
Ga(r,t)=d1(){1(t) +F(r,)[1— ¢1(D) ]}, k.
' ! ! ! (2.29 Note that the last equation has the functional form of Eq.
Co(r,t)=[1—¢o(t) {1— po(t)[1—F(r,0)]}, (2.18, and hg;(r) can be interpreted ab wp("), the indi-
vidual autocorrelation function. Moreover, it is important to
Ci(r,t)=[1— go(t)]F(r,1). note that in the last equation the time dependence is assumed

. . by Nz, the droplet size-shape distribution function, while
In these equations we can observe the right asymptoti¢_ , notices the individual droplet autocorrelation function of
behaviors of all the correlation functions. From the last equashapea and sizeg.
tion we can write all the correlation functions as a function  Reordering the sums and multiplying the two sides of the
of ¢(t), C4(r,t), andp: last equation by the transformed phalsk;- ¢o(t)], we ob-

2 tain
Go(r,t) = (1) + do(D)Ca(r 1),

_ _ Niap(®) )
Gy(r,t)= z{[l bo(D) 12+ [ do(D) +(p—1)ICy(r, 1)}, IR Eﬁ;Ek v ¢O(t)]faf2(r2)é)

_ - We can interpreE N, z(t)/N as the probability of find-
Ho(r,t)= ¢o(t){[1 do()]-Ca(r.0)]}, (229 ing droplets of @) type iﬁ the transformed phase at time
Also, we can interpreE [ Ny,g(t)/N][1— ¢o(t)] as thenD
1 volume (n-dimensional volumg fraction corresponding to
Ha(r,t)= F[l_ Po(OH{[1— po()]—Cy(r,0)]}, the droplets of &) type at timet.
Using the last equation dR.24), we obtain

Co(r,t)=[1— o(t) 1>+ po(t)Cy(r,1).

Equationg2.23), (2.24), and(2.25 show that the problem Cu(rit)= % ; (
of determining all the correlation functions has been reduced

to the determination of the unknown functidh(r,t). To  \yherev,4(t) is thenD volume occupied by the droplets of
interpretF(r,t) we will use the properties o€,(r,t). As (aB) type at timet, andV is thenD volume of the whole
previously statedC,(r,t) is the probability of finding, at gystem under consideration.

time t, two points separated by a_distance’n the same DevelopingV/,4(t) as a function of the number of drop-
droplet of the transformed volume; in E@.24) we can see |gtg of (@B) type,N,;, and thenD volume of each droplet,
thatC,4(r,t) is the probability of finding a point belonging to

the transformed phase timé&gr,t), so F(r,t) must be the Vap, We have
system global averaged autocorrelation function. —

From this concept we can develop Eg.24) to obtain the I -> 3 Naﬁ(t)vaﬁf 23
general expression that givé;(r,t) as a function of the \

) fap(r), (2.29
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L Y22
_7T_I’i - 2_I'| —;arcm 2_r|

cl(r,t>=§ 2 Nap(OVaplap(n), (23D XO®(2r,—1) (2.37

and thus r
)=
i

. i for two dimensions, an® is the Heaviside function. It is
wheren,,4(t) is thenD density of the droplets of{B) type  important to note that we have chosen as the initial droplet

at timet. . L o autocorrelation function the one corresponding to the more
Computation off ,4(r) is significantly simplified by re-  compact geometrical shape in its respective dimensions. The
calling thatV,zf,5(r) is the theoretical excludedD vol-  relation between theD volume and the radius of the droplet

ume[5,13] of two similar droplets with a separation between is obviously
centers of . A greater advantage is gained if we recall that it

is only necessary to calculate one typical droplet autocorre- V.- 27°"? D (2.39
lation function by domain, since all the droplets of one do- B dI'(DI2) "6 '

main are self-similar, of the same shape, and their autocor-

relation functions are scalable. Thus, defining Thus C{(r,t) gives the autocorrelation function of a sys-

tem of nonoverlapped spheres occupying the transformed

I volume at any timet. In the limit t—oo, the transforme
I i In the limi h f d
fa(I =fa(r) (2.32  volume fills the whole space, and then the topology de-
scribed byC‘f(r,t) is impossible. However, the transformed
as the droplet autocorrelation function of a unit length drop_l;ar;aoc\}:)(;lt;wsatconserved by1(r.t), because it can be easily
let, we have
0 2’7TD/2
[ dr r®=0¢cr t
fop(r)= fa<r—) (2.33 Jo I'(D/2) 1(r.t)
B
, . [1—¢o(1)]?
and the final expression &, (r,t) becomes = TZ[l— do(H) KV(1)), (2.39

_ — = [T wheren(t) and(V(t)) are respectively the totalD density
Cl(r't)_% ; Nap(DVapf “(G>' 239 o droplets(number of droplets by unitD volume and the
averagenD volume of a droplet at timé. Therefore, we see

Equation(2.34) allows one to determin€,(r,t) exactly that the calculatecC(l)(r,t), without considering impinge-
and, as we have shown, the rest of the correlation functiongn€nt, is the first order averaged autocorrelation function or,
whether the exact droplet size-shape distribution is knownin other words, the autocorrelation function of an “average

because no approximations have been used in its derivatiofroplet.” . o _ o
Looking again aCi(r,t), we can easily see that it is not

the autocorrelation function of arD sphere. It could only be
this in the case where all the grains wer@ spheres of the
Equation(2.34) is a formal expression. It can be calcu- same radius, that isng(r,t)=no(t)S(r—ro). Moreover,
lated if the shape and space orientation of all grains argince amD spherical object is the most geometrically com-
known, but this is in fact impossible in practical situations pact objectp‘l’(r,t) is sure to extend to a distance larger than
due to impingement between growing grains. Moreover, afhe autocorrelation function of atD sphere of the sameD
infinite number of droplet shapes exists, corresponding tQolume. That is to say, the average droplet is less compact
impingement between two, three, or more grains. than anD sphere, but preserves th®-spherical symmetry.
Nevertheless, we can calculate a first approximation to  However, in order to obtain the actu@l(r,t) we need an
Cy(r,1), in the case of isotropic growth, neglecting impinge- additional hypothesis. We will first characterize true droplets
ment and assuming that grains are perfenflyspherical. It py their effective radiusdefined by
is referred to asC(l)(r,t), defined by

B. Application to isotropic growth

DI'(D/2)—\ P

——o VvV
clrp=3 nﬁ(t)vﬁTo(rL), (2.39 272 TP
g corresponding to the radius of arD sphere of the same
volume. Then we will use the fact that the shape distribution
of grain populations characterized by different effective ra-
diusr 5 are self-similar. In other words, the shape distribution
3 of all the grains having the same volume is independent of

7 (L) :{ _ E(L) 4 i(i) }@(Zr-—r) (2.3  the value of this volume. Consequently, the autocorrelation
0 i . . . ..
ri 4\r;/ 16\, functions of these populations are also self-similar, and are
scaled by a characteristic length that is chosen as the effec-
for three dimensions and tive radius. Finally, we can assume tr@-ﬁ(r,t) is represen-

where To(r/rﬁ) is the autocorrelation function of anD
sphere given by
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tative of all of them, because it corresponds to the autocorp-degenerated state. Thecell model considers instanta-
relation function of the “average spherical droplet.” Its neous nucleation restricted to the initial tinte=0Q) and con-
radiusL(t), defined in the same way as before, stant and isotropic growth rate. In both cases, the time de-
dr(D/2) 1D pendent particle size populations are evaluated by means of
L(t)=<%2—<V(t)>> , (2.40) the “popu_latlonal KIMA” model[s]. The resultu_ﬂg correla-
2m tion functions are compared with those obtained by Ohta
et al.[12], who used the time-cone method. In order to allow
comparison between the two methods the nucleation radius,
which cannot exist in the time-cone method but is inherent to
the populational KIMA method, has been taken in the last
case small enough, so that its effect becomes negligible. Fur-
(rL” thermore, the method is applied to a kinetics characterized

will be used as the corresponding scaling length.

Therefore, the expression f@,(r,t) is obtained by re-
placing To(r/r g) by C(rL/r.) in the definition ofCY(r t)
given by Eq.(2.35:

1 o
1—o(t) 1

1 sy VUT ( rL
1-go)S G 7P Oy,

by diffusion controlled growth. Two cases are considered,;
namely, hard and soft impingement. The first is typical of
stoichiometric compounds, assuming that there is no over-
) lapping of the diffusion fields between growing grains, while
the second appears in partitioning transformations, and takes
[ into account the overlapping of the diffusion fields between
= m; EB: %(ﬁg%(m): (2.42 contiguous grains. In all cases, the time dependent particle
size distributions used for the evaluation of the correlation
which has the functional form required by E@.21), and functions are obtained by means of the populational KIMA
where we can identify the transformation given by Eg.model[10,9]. In the case of a diffusion controlled growth,
(2.22, affected by a scale factor. This equation takes intdhe correlation functions have not been calculated in the lit-
account the impingement throughout the interaction betweearature. Moreover, in the case of soft impingement, the time-
populations, resulting in nonb-spherical droplets. cone method cannot be applied because the growth rate de-
The behavior ofC,(r,t) is slightly different from the pends on the already crystallized fraction.
C‘f(r,t) due to the fact that we have built nonspherical drop- The time dependent particle size distributions evaluated
let autocorrelation functions. Thugl) C‘f(r,t) extends to by means of the populational KIMA model, and from which
r=2Rma While Cy(r,t) extends tor=2RZ,/L>2R .y, the correlation functions are obtained, are also given in the
Rmax being the largest droplet radius of the populati@®). results. The grain size distributions are given in the form
Cl(r,t)<C(l’(r,t) for r—0. n(rq) =n(0<r<ry). Thus, the grain density is defined as
The physical reason for this behavior is that the built non-
spherical autocorrelation function is less compact than the
original one, and consequently its tail extends further. Then, dn(r)
the behavior obtained far—0 is due to the conservation of p(r)= dr (3.9)
the transformed volume, expressed by E2.39, and the
fact thatC,(r,t) and Cg(r,t) are monotonically decreasing

Cl(r,t)=2 nyv_7 .
Y y

functions. _ _ _ Thep-JM and thep-cell models have been calculated in
Equation(2.42 is postulated from the above cited plausi- yyq and three dimensions. The calculations are not valid for

bility arguments, that is, it has the_ functional form _requiredone dimension because of the special characteristics of such
by Egs.(2.18 and(2.21) and takes into account the isotropy system, as Axe and Yamafte7] demonstrated. The cases

considerations. Moreover, in its deduction no approxima-s iffusion controlled growth have only been calculated in

tions have been made and, therefore, if the hypotheses afee gimensions for both hard and soft impingement, since
correct it gives the exact solution. Nevertheless, it has not is 5 situation of major physical significance.

been mathematically proved, and its validity will be tested
by comparison with analytical results obtained by the time-
cone method in the available cases. A. p-JM model
Equations(2.25 and (2.42 are the main results of this ] )
paper because they establish a simple way to calculate Thep-JM moqlel considered hasa_constantnucleaﬂon rate
C4(r,t) and, in their turn, all the system autocorrelation! @nd an isotropic droplet front velocig. That is to say,
functions as a function of the droplet size distribution func- (1) =
tion. (=1,
(3.2

lll. RESULTS G(t)=G,.

We have tested our method for the two typical more im-
portant cases given by the literature: thestate Johnson-
Mehl model -JM mode) and thep-state cell modelg-cell A nondimensional representation is chosen following
mode). The p-JM model considers constant nucleation fre-[12], in which the natural time scale, length scale, and
guency and constant isotropic growth rate for adensity scaley are given by
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T:(loGg)_ll(D+1),

[\ ~UD+1)
§=(—°) , (3.3

77zg—(DJrl):(l_O)_

The results obtained for a two-dimensional and a three-
dimensional system are shown in Figs. 1 and 2, respectively.
Figures 1a) and Za) show the dependence of the trans-
formed fraction with time. The computed droplet size distri-
butions, used in the evaluation of the correlation functions at
different times, are shown in Figs(d) and 2b). In order to
help comparison, the values of time selected are the same as
those chosen by Ohtat al. [12], namely, t/7=0.25, 0.5,
0.75, 1, 1.25, 1.5, and 2. Figurescl and Zc) show the
autocorrelation function€2(r,t) (dashed linpand Cy(r,t)
(solid ling). The correlation functionsCy(r,t) and Gy(r,t)
are also shown in Figs.(d,e and 2d,e. Graphs for the rest
of the correlation functiong{y(r,t), H(r,t), andG,(r,t),
are not shown, but they can easily be built up from the
C4(r,t) function.

The particle size distribution shows a flat profile in both
cases. Comparison with the results given by Ottal.
shows thaC?(r ,t) is far from the exact result whil€,(r,t)
is very close. Differences are about 1% but they are not due
to numerical approximations in our calculation but to the fact
that we consider nuclei of finite size. This implies that the
values of¢q(t) are slightly different from those obtained by
the time-cone method at the same times and, therefore, the
numerical asymptotic values of the functions at the same
times have to be different. However, both the correlation
functions calculated with our method and with the time-cone
method satisfy the analytical asymptotic behaviors summa-
rized in Tables | and Il. These results show the validity of the
relationship between the correlation functions deduced in
this paper.

B. p-cell model

For thep-cell model the nucleation events are restricted to
t=0 and the droplet growth rate is constant and isotropic.
That is to say,

H(t)=106(1),

G(t)=G,.

(3.9

The natural time scale, length scale, and density scale
7 are given by
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FIG. 1. Two-dimensionap-JM kinetics.(a) Transformed frac-

tion vs time.(b) Computed droplet size distribution&) Autocor-

Gy ’ relation functionsC(r,t) (dashed lingandC,(r,t) (solid line). (d)
Correlation functiorCy(r,t). (e) Correlation functioriGy(r,t). (b)—
=140, (3.5 (e are plotted at/7=0.25, 0.5, 0.75, 1, 1.25, 1.5, and 2.

7= g0+ = |0(D+1)/D.

tions (b), correlation functionsC‘{(r,t) and Cy(r,t) (c),

Figures 3 and 4 show respectively the two-dimensionalCo(r,t) (d), andGy(r,t) () are presented, at the same times
and three-dimensional cases. As in the previous case, tiehosen by Ohtat al.
A peaked profile is obtained in the droplet size distribu-

transformed fraction versus tim@), droplet size distribu-
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FIG. 2. Three-dimensiongd-JM kinetics.(a) Transformed frac- FIG. 3. Two-dimensionap-cell kinetics.(a) Transformed frac-
tion vs time.(b) Computed droplet size distribution&) Autocor-  tion vs time.(b) Computed droplet size distribution&) Autocor-
relation functionsC3(r t) (dashed lingandC(r,t) (solid line). (d)  relation functionsCY(r,t) (dashed lingandC,(rt) (solid line). (d)
Correlation functiorCo(r,t). (€) Correlation functiorGy(r,t). (0)—  Correlation functiorCy(r,t). (€) Correlation functiorG(r,t). (b)—
(e) are plotted at/7=0.25, 0.5, 0.75, 1, 1.25, and 1.5. (e) are plotted at/7=0.25, 0.5, 0.75, 1, 1.25, and 1.5.

tion, which is completely different from that obtained in the flected in the correlation function@?(r,t) and Cq(r,t),
p-JM case. Consequently, a much more homogeneous grawhich become much closer.

distribution is obtained, which results in a shorter correlation Comparison with the analytical time-cone results has also
length. Therefore, the fact that the final distribution has abeen performed and the same considerations given for the
small standard deviation around the average radius is rg-JM model apply.
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FIG. 4. Three-dimensiongl-cell kinetics.(a) Transformed frac-
tion vs time.(b) Computed droplet size distribution&) Autocor-
relation functionsC{(r,t) (dashed lingandC,(r,t) (solid line). (d)
Correlation functiorCy(r,t). (e) Correlation functiorGy(r,t). (b)—
(e) are plotted at/7=0.25, 0.5, 0.75, 1, and 1.25.

C. Diffusion controlled growth

material. These transformations result in a partially crystal-
lized material, with a final crystallized fractiony=

1— (). A diffusion controlled growth is normally ob-
tained in such cases as a result of the migration of elements
out of or into the newly formed crystals. The classical ex-
pression for the growth rate is obtained by considering a
grain growing in isolation with spherical symmetr$8]. In

this case, a steady-state concentration profile is obtained by
taking the moving surface of the particle as the origin of the
coordinates. The growth rate is given by

dr ~C*-Cy 1
dt P —Cy I’ 3.6
whereC* is the concentration of species at the surface of the
particle, C,, is that inside the crystal, an@, is that in the
matrix far away from the particle. In this case, the droplet
growth rate is isotropic but radius dependda{R).

Moreover, a constant nucleation rdtewill also be con-
sidered. In this case, a particle growing in isolation is con-
sidered, and therefore there is no interference between the
concentration profiles of different grains. This case is called
diffusion controlled growth with hard impingement. We will
perform the calculations assuming that the transformed frac-
tion at the end of the primary precipitation is 50%, thus
v=0.5.

The natural time scale, length scale, and density scale
7 are given by

= ( I ODS/Z) —1/(D/2+ 1),

D, M0+2)

§:(K> , (3.7

~ DO —(D+1)/(D+2)

77:§ (D+1):(I_> )

0
where
D= —Co (3.9
0 C* _CXt. .

As in the previous case, Fig. 5 shows the transformed
fraction versus timda), droplet size distributiorib), corre-
lation functionsC3(r,t) and C(r,t) (c), Co(r,t) (d), and
Gy(r,t) (e). The values of dimensionless time are the same
as in the previous cases, showing that the characteristic di-
mensionless transformation time is of the same order of mag-
nitude.

The droplet size distribution shows an asymmetrically
peaked shape, very different from that obtained with inter-
face controlled growth §-JM Kkineticy. The correlation
functions have shorter correlation lengths, much closer to the
value found with thep-cell model. The value o€,(0,») is,
as expected, equal to the final transformed fraction, in our
case taken to be 0.5.

In partitioning transformations, the overlapping between
the concentration fields of neighbor grains cannot be

Most of the interesting transformations driven by a nucle-avoided. In fact, this interference diminishes the concentra-
ation and growth kinetics are primary precipitates with ation gradient at the surface of the grain, which results in a
composition differing from the original composition of the reduction of the growth velocity. This mechanism is known
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FIG. 5. Three-dimensional constant nucleation and diffusion
controlled growth kinetics with hard impingemefd) Transformed
fraction vs time.(b) Computed droplet size distribution&) Auto-
correlation function<€d(r,t) (dashed lingandC(r,t) (solid line).
(d) Correlation functionCy(r,t). (e) Correlation functionGy(r,t).
(b)—(e) are plotted at/7=0.25, 0.5, 0.75, 1, 1.25, 1.5, and 2.

FIG. 6. Three-dimensional constant nucleation and diffusion
controlled growth kinetics with soft impingemertg) Transformed
fraction vs time.(b) Computed droplet size distribution&) Auto-
correlation functions€€(r,t) (dashed linpandC(r,t) (solid line).

(d) Correlation functionCy(r,t). (e) Correlation functionGy(r,t).
(b)—(e) are plotted at/7=0.5, 1, 1.5, 2 and 6.

as diffusion controlled growth with soft impingement. This stating a mass balance of the diffusing species, and assuming
fact may be taken into account by considering that the conthat at the end of the transformation the concentration gradi-

centration of diffusing species far away from the grain has ant disappeargl0], a modification of the growth velocity is
mean value that increases as the transformation proceeds. Bitained:
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dr ~ C*—Co(l—X(t)/y 1 anisotropic function, the spatial orientation of the growing
——=D (3.9  droplets is still isotropic. In those cases, the hypothesis of

* _ _ T
dt C*=Cul 1-X(v) 1 self-similarity of the growing droplets enables us to obtain

where the concentrations are the same as in the case of ha&f§act correlation functions, although the exact droplet size-

impingement, andK(t) =1— ¢(t) is the transformed frac- shape d|str|but|.on function still remains unknov_vn.
tion at timet. The calculation of the correlation functions is performed

The natural scales used for presenting the plots are th using the particle size distribution obtained by a recently

same as in the case of hard impingement. Figure 6 shows tq eveloped modefpopulational KIMA. Since this model is

! X . S Sss restrictive than those used in previously existing theo-
transformed_ fraction _versuos tinfe), droplet size distribution ries, the result is that the correlation functions can be ob-
(b), correlation functiongCi(r,t) and C(r,t) (c), Cy(r,t)

tained for dependencies of the kinetic magnitudes on time,
(d), andGg(r,t) (e).

; o _crystallized fraction and the radius of the growing grain, and
The droplet size distribution also shows an asymmetri4jiows us to consider the finite size of the nuclei.

cally peaked shape, similar to that obtained for hard diffu- The method has been tested with thecell and p-JM
sion, the main difference being the accumulation of graing,,qe|s, for which exact correlation functions exist in the
with small radii at the end of the transformation due to thejjiorature obtained by means of the time-cone method, and
reduced growth at large transformed fractions. Although the,,\vs 11l agreement considering that in our calculations the
final shape is similar, the time dependence is completely diffiite size of the nuclei has been taken into account. Finally,

ferent, showing that the soft impingement kinetics heavilyihe correlation functions corresponding to the microstructure
delays the transformation with respect to hard impingementye,eioped in partitioning transformations, considering diffu-

This is also noted in the dimensionless time values, whichyjoy controlled growth with hard and soft impingement, are
are nowt/7= 0.5, 1, 1.5, 2, and 6. The correlation functions /54 obtained.
also show a very different time dependence. The use of the populational KIMA model for determining
the particle size distributions, together with the method pre-
IV. CONCLUSIONS sented here for evaluating the correlation functions, results in

The general relationship between spatial correlation func? powerful tool_ in the eval_uahqn of micro and macro prop-
erties of materials underlying first-order phase transitions.

tions and droplet size distribution is presented. This expres
sion allows us to obtain all the correlation functions for a
given microstructure for an arbitrary value of the degeneracy
parametemp. The authors wish to thank Dr. T. Pradell for her many
While considering nucleation and growth kinetics, exacthelpful comments and her critical reading of the final manu-
correlation functions are obtained in the case of isotropicscript. This work was partially financed by DGICYT, Grant
growth. The concept of isotropy in the growth rate includesPB94-1209, Generalitat de Catalunya 1997SGR 00039 and
the case where, with the growth of the droplets being artUPC, Grant PR9505.
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